首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1845篇
  免费   241篇
  国内免费   525篇
测绘学   74篇
大气科学   209篇
地球物理   310篇
地质学   967篇
海洋学   612篇
天文学   18篇
综合类   187篇
自然地理   234篇
  2024年   4篇
  2023年   14篇
  2022年   60篇
  2021年   49篇
  2020年   65篇
  2019年   74篇
  2018年   57篇
  2017年   55篇
  2016年   65篇
  2015年   71篇
  2014年   110篇
  2013年   107篇
  2012年   89篇
  2011年   123篇
  2010年   112篇
  2009年   131篇
  2008年   127篇
  2007年   111篇
  2006年   145篇
  2005年   116篇
  2004年   81篇
  2003年   90篇
  2002年   95篇
  2001年   77篇
  2000年   81篇
  1999年   74篇
  1998年   60篇
  1997年   45篇
  1996年   56篇
  1995年   42篇
  1994年   38篇
  1993年   42篇
  1992年   23篇
  1991年   20篇
  1990年   26篇
  1989年   20篇
  1988年   10篇
  1987年   13篇
  1986年   12篇
  1985年   12篇
  1984年   4篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1976年   1篇
排序方式: 共有2611条查询结果,搜索用时 375 毫秒
61.
Treatment with metallic copper for the removal of elemental sulfur from bitumen extracted from sedimentary rocks or petroleum is the most widely used method. Little attention has been paid, however, to its disadvantages. It was observed that copper can interact with some polar organic substances during conventional sulfur removal, which can strongly influence the quantitative and qualitative determination of bitumen, as has been confirmed by interaction of long-chain fatty acids with copper. The copper soap generated was analyzed by element analysis, inductively coupled plasma optical emission spectrometry (ICP-OES), thermal analysis (TG-DSC) and Fourier Transform Infrared spectroscopy (FFIR). Mechanism of the interaction was investigated and elucidated. Our experimental results would necessitate improvement of the present method for sulfur removal and/or a search for a new one.  相似文献   
62.
酸性矿山废水(acid mine drainage,AMD)是一类pH低并含有大量有毒金属元素的废水。AMD及受其影响的环境中次生高铁矿物类型主要包括羟基硫酸高铁矿物(如黄铁矾和施威特曼石等)和一些含水氧化铁矿物(如针铁矿和水铁矿等),而且这些矿物在不同条件下会发生相转变,如施氏矿物向针铁矿或黄铁矾矿物相转化。基于酸性环境中生物成因次生矿物的形成会"自然钝化"或"清除"废水中铁和有毒金属这一现象所获得的启示,提出利用这些矿物作为环境吸附材料去除地下水中砷,不但吸附量大(如施氏矿物对As的吸附可高达120mg/g),而且可直接吸附As(III),还几乎不受地下水中其他元素影响。利用AMD环境中羟基硫酸高铁矿物形成的原理,可将其应用于AMD石灰中和主动处理系统中,构成"强化微生物氧化诱导成矿-石灰中和"的联合主动处理系统,以提高AMD处理效果和降低石灰用量。利用微生物强化氧化与次生矿物晶体不断生长的原理构筑生物渗透性反应墙(PRB)并和石灰石渗透沟渠耦联,形成新型的AMD联合被动处理系统,这将有助于大幅度增加处理系统的寿命和处理效率。此外,文中还探讨了上述生物成因矿物形成在AMD和地下水处理方面应用的优点以及今后需要继续研究的问题。  相似文献   
63.
The kinetics of the aqueous phase reactions of NO3 radicals with HCOOH/HCOO and CH3COOH/CH3COO have been investigated using a laser photolysis/long-path laser absorption technique. NO3 was produced via excimer laser photolysis of peroxodisulfate anions (S2O 8 2– ) at 351 nm followed by the reactions of sulfate radicals (SO 4 ) with excess nitrate. The time-resolved detection of NO3 was achieved by long-path laser absorption at 632.8 nm. For the reactions of NO3 with formic acid (1) and formate (2) rate coefficients ofk 1=(3.3±1.0)×105 l mol–1 s–1 andk 2=(5.0±0.4)×107 l mol–1 s–1 were found atT=298 K andI=0.19 mol/l. The following Arrhenius expressions were derived:k 1(T)=(3.4±0.3)×1010 exp[–(3400±600)/T] l mol–1 s–1 andk 2(T)=(8.2±0.8)×1010 exp[–(2200±700)/T] l mol–1 s–1. The rate coefficients for the reactions of NO3 with acetic acid (3) and acetate (4) atT=298 K andI=0.19 mol/l were determined as:k 3=(1.3±0.3)×104 l mol–1 s–1 andk 4=(2.3±0.4)×106 l mol–1 s–1. The temperature dependences for these reactions are described by:k 3(T)=(4.9±0.5)×109 exp[–(3800±700)/T] l mol–1 s–1 andk 4(T)=(1.0±0.2)×1012 exp[–(3800±1200)/T] l mol–1 s–1. The differences in reactivity of the anions HCOO and CH3COO compared to their corresponding acids HCOOH and CH3COOH are explained by the higher reactivity of NO3 in charge transfer processes compared to H atom abstraction. From a comparison of NO3 reactions with various droplets constituents it is concluded that the reaction of NO3 with HCOO may present a dominant loss reaction of NO3 in atmospheric droplets.  相似文献   
64.
Relatively large quantities (1 mg) of formic acid have been collected from the atmosphere and subjected to carbon-isotopic analysis, as a means of source discrimination. Ambient formic acid was captured on Ca(OH)2-treated filters using a high-volume sampler. The collection method was not only efficient (>96%), but also appears to have low artifact production.Most of the samples (36 out of 52) were collected over a two-year period at the summit of Mount Lemmon, Arizona, where a strong seasonality in HCOOH mixing ratio was observed (0.2 ppb during winter months to 1.5 ppb in the summer). Other collection sites included the Oregon coast, Colorado Rockies, urban Tucson, and the North Dakota prairie. The carbon-13 content of atmospheric HCOOH was found to be have little variation (–18 to –25), regardless of location or season. This is consistent with a single dominant source of formic acid. The carbon-14 measurements of 6 Mount Lemmon samples showed high levels of modern carbon (93–113% modern).The emissions from formicine ants and automobile combustion were selected as two other potential sources for isotopic analysis. The HCOOH collected from auto exhaust was much more depleted in13C than the atmospheric samples, with a 13C of –28.0 and –48.6 from a leaded and unleaded automobile, respectively. Formicine ants, on the other hand, ranged from –17.2 to –20.6.  相似文献   
65.
The kinetics of conversion of iron(III) (hydr)oxides to ferrous iron mediated by fulvic acid have been investigated in order to improve the understanding of the redox cycling of iron at the oxic-anoxic boundary in natural waters. Under the conditions similar to natural waters, fulvic acid is able to reduce the iron(III) (hydr)oxide. The kinetics of the reaction depend on the reactivity of iron(III) (hydr)oxides and the reducing power of the fulvic acid. The rate of reaction is 60 nm/h obtained under following conditions: total concentration of Fe(III) 1.0 × 10–4 M, pH 7.5, fulvic acid 5 mg/L. The rate is considered as a net result of reduction and oxidation in the > FeIII-OH/Fe(II) wheel coupled with fulvic acid. In a real natural water system, reductants other than fulvic acid may be of importance. The results obtained in the laboratory, however, provide evidence that the Fe(OH)3(s)/Fe(II) redox couple is able to act as an electron-transfer mediator for the oxidation of natural organic substances, such as fulvic acid by molecular oxygen either in the absence of microorganisms or as a supplement to microbial activity.  相似文献   
66.
The acceleration of the mean lunar longitude has a small effect on the periods of most terms in a Fourier expansion of the longitude. There are several planetary perturbation terms that have small amplitudes, but whose periods are close to the resonant period of the lunar libration in longitude. Some of these terms are moving toward resonance, some are moving away from resonance, and the periods of those terms that do not include the Delaunay variables in their arguments are not moving. Because of its acceleration of longitude, the Moon is receding from the Earth, so the magnitude of the restoring torque that the Earth exerts on the rotating Moon is gradually attenuating; thus resonance itself is moving, but at a much slower rate than the periods of the accelerating planetary perturbations. There are five planetary perturbation terms from the ELP-2000 Ephemeris (with amplitudes of 0.00001 or greater) that have passed through resonance in the past two million years. One of them is of special interest because it appears to be the excitation source of a supposed free libration in longitude that has been detected by the lunar laser ranging experiment. The amplitude of the term is only 0.00021 but it could be the source of the 1 amplitude free libration term if the viscoelastic properties of the Moon are similar to those of the Earth.  相似文献   
67.
The leaching of coal and coal/asphaltite/wood-ashes in sulfuric acid (pH 1.0, 25 °C, S/L, 1:10) was studied as a function of time; acid consumption and extracted metal concentrations are presented. Whole coals consumed acid rapidly during the first few minutes, followed by slow acid consumption. Wood-, lignite-, and asphaltite-ashes consumed acid in two stages, the rapid phase extending < 30 min and the slow phase extended up to 10 days. The rapid phase was dominated by the dissolution of Ca, K and Mg ions for wood-ash, by Ca, Al and Mg ions for lignite-ash and Ca and Mg ions for asphaltite-ash. The sulfur concentration in solution and the concentrations of Ca, Fe, K, Mg, Na, P, Al and Mn in the aqueous phase verified the neutralizing capacity of the untreated ashes as well as the formation of insoluble sulfates in the residues. The slow phase kinetics differed for different fuels and exhibited leaching of several abundant elements—Fe, Al, K, Na and Mn. Trace elements (Ba, Cd, Co, Cr, Cu, Mo, Ni, Pb, Th, U, V, Zn) sometimes required up to 32 h for maximal extraction from ashes. Suggestions are presented regarding the chemical nature of trace elements in the untreated coals and ashes and suitable residence times for economical industrial processes. We think it possible to combine bacteriological oxidation of sulfidic concentrates of acid leaching from ash of various qualities or even whole coals.  相似文献   
68.
Although inorganic species are predominant in natural systems, but there are many kinds of organoarsenic species such as methylated and phenylated arsenic compounds. Phenylarsonic acid (PA) is a degradation product of organoarsenics used for chemical warfare agents, which has been detected in well water at the disposal site of the agents in Japan. There are few reports studying behavior of PA in soil. In this study, PA was adsorbed onto ferrihydrite and its chemical forms were determined using high performance liquid chromatography connected to inductivity-coupled plasma mass spectrometry (HPLC-ICP-MS). 100 mg/kg of PA was mixed with 0.03 g of 2-line ferrihydrite. For each suspension, pH was adjusted by HNO3 or NaOH. Each sample was incubated for more than 19 hours and the final pH was measured. After filtration, the chemical form of arsenic in the filtrate was measured using HPLC-ICP-MS. In addition, ferrihydrite separated by filtration was dissolved by 3 ml of 0.5 M HCI and the arsenic species in the solution was detected by HPLC-ICP-MS (column: Tosoh TSKgel SuperlC-AP, eluent: 0.01 M HNO3). It was verified that PA is not degraded by heating in 0.5 M HCl solution. At pH 3.1, any arsenic compounds were not detected from the solution, because almost all arsenic species were adsorbed onto ferrihydrite at lower pH. At pH= 12, however, 7%-10% of inorganic arsenic was detected in the solution. In solid phase, there are some problems to determine the precise ratio of inorganic and organic species. When the solution includes Fe ion at 0.01 M level, the retention time of arsenic species drifted compared to those in standard solution, which makes it difficult to determine precisely the arsenic species adsorbed on ferrihydrite. Therefore, more study is needed to determine the ratio of inorganic and organic species in the system.  相似文献   
69.
Low molecular weight organic acids (LMWOAs) are important components of root exudates. They play an important role in immobilizing and remobilizing contaminants in rhizospheric soil. Effects of four LMWOAs on the sorption and desorption behavior of p-chlorophenol by yellow earth was studied in batch mode. The results showed that the previous application of LMWOAs to enhanced adsorption capacity of p-chlorophenol of the soil in the order of maleic acid〉malic acid〉oxalic acid〉citric acid. However, when LMWOAs were applied to soil where p-chlorophenol had been previously adsorbed, substantial p-chlorophenol was desorbed from soil by oxalic acid, whereas citric acid, malic acid and maleic acid didn't desorb as much p-chlorophenol from soil as deionized water.  相似文献   
70.
Acidification is considered the most important one of the primary chemical stress factors that impact on freshwater ecosystems. In unpolluted freshwater systems, the primary controls on the degree of acidification are factors such as the geological substrate of the catchment area, the presence of organic acids secreted by vegetation in the river system, and equilibrium exchange of carbon dioxide with the atmosphere. Anthropogenic factors that can impact on the degree of acidification of freshwater systems include agricultural, mining and industrial activities, either through direct runoff into river systems or through deposition of atmospheric pollutants from these sources. The capacity factors alkalinity and acidity, which represent the acid- and base-neutralizing capacity (ANC and BCN) of an aqueous system, have been used as more reliable measures of the acidic character of freshwater systems than pH. Unlike pH, ANC and BNC are not affected by parameters such as temperature and pressure. Therefore, ANC has been employed as a predictor of biological status in critical load assessments. Freshwater systems with ANC's eq/L isμeq/L are considered sensitive to acidification, ANC=0 μbelow 150 commonly used as the predictor for fish species such as trout in lakes, and an eq/L as more realistic for streams. Acid-neutralizing capacity μANC value of 40 (ANC) can be determined by titration with a strong acid to a preselected equivalence point. Alternatively, it can be calculated as the difference between base cations ([BC]) and strong acid anions ([SAA]): ANC=[BC]- [SAA]=[Ca^2+]+[Mg^2+]+[Na^+]+[K^+]-[SO4^2-]-[NO3^-]-[Cl^-] To date, there has been no attempt to establish the ANC of South Africa's freshwater ecosystems or variability therein, despite the fact that long-term water quality monitoring data exist for all the parameters needed to calculate it according to the above equations. As a result, the relationship between the acid neutralizing capacity of freshwater ecosystems in South Africa and biodiversity factors, such as fish status, is unknown. Results of the first comprehensive (country-wide scale) evaluation of the acid neutralizing capacity of river systems in South Africa will be presented. Long-term monitoring data obtained from the Department of Water Affairs and Forestry (DWAF) from most of South Africa's river systems were used to establish geographic and temporal variabilities in ANC. The results show that the Berg and Breede River systems are most susceptible to acidification, and that geological substrate appears to explain most of the geographic variabilities observed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号